A simultaneous model for ultrasonic aggregate stability assessment

A. Fristensky, M.E. Grismer

Hydrologic Sciences, UC Davis, Davis CA 95616, United States
Departments of LAWR and Biological and Agricultural Engineering, 1 Shields Ave UC Davis, Davis CA 95616, United States

1. Introduction

Aggregate stability is a highly complex parameter influencing a wide range of soil properties, including carbon stabilization, soil porosity, aeration, compactibility, crustability, water retention, hydraulic conductivity, and resistance to detachment and transport by wind, raindrop impact, and overland flow. A variety of techniques have been developed for measuring this parameter (Amezqueta, 1999). Among these, ultrasonic processing of soil–water suspensions has attracted considerable investigation (North, 1976; North, 1979; Imeson and Vis, 1984; Fuller and Goh, 1992; Levy et al., 1993; Raine and So, 1993; Raine and So, 1994; Tippkotter, 1994; Field and Minasny, 1999; Field et al., 2006). In contrast to most conventional methods, the ability to quantify the level of mechanical energy applied to soil (North, 1976; Raine and So, 1993) enables the results of ultrasonic stability tests to be quantified and compared in a continuous index of treatment intensity. Also, ultrasonic processing allows considerable control and flexibility over both the power and total energy of application. This allows aggregate comminution to be observed and modeled over a desired range of applied energy, offering the advantage of representing aggregate stability as a rate of resistance to fragmentation, rather than as the fraction of aggregates remaining following a treatment of often arbitrary intensity or duration. Furthermore, simultaneously modeling the comminution of aggregates in more than one range of aggregate particle-sizes (e.g. <2 μm, 2–20 μm, 20–2000 μm) can offer insight into aggregate comminution dynamics and aggregate hierarchy (Field and Minasny, 1999; Field et al., 2006).

This study presents a model of the redistribution of particles throughout a soil particle-size distribution (PSD) as aggregates comminute under ultrasonic agitigation. The proposed model enables investigation of the stability, component PSD, and hierarchy of soil aggregates by simultaneously modeling total mass changes in any selected set of PSD partitions (i.e., [x1, x2], [x2, x3],..., [xn−1, xn]) as ultrasonic energy is applied to a soil–water suspension. The goal of this development is to enhance the flexibility and resolution of ultrasonic aggregate stability assessment. The model is also intended to be universally applicable. That is, it does not presume studied aggregates to possess a particular hierarchical structure, or to comminute according to a particular pathway under ultrasonic agitation (Field and Minasny, 1999; Field et al., 2006). The model also allows for the possibility that aggregate fragmentation may
2. Methods and materials

2.1. Model development

As shockwaves generated from ultrasound-induced cavitation propagate throughout a soil–water suspension, the bonds cohering discrete soil particles into aggregates may become disrupted, leading to aggregate fragmentation. If the liberated particles consist of yet smaller aggregates, these may continue to break down under added stress. This process of aggregate disruption continues until the state of complete soil fragmentation and dispersion into primary particles (clay, silt, sand) is reached, or until the point at which the power applied is inadequate to overcome the strength of the remaining aggregate bonds. If a hierarchy exists, an inverse relationship between aggregate order and strength may be explained by the ‘porosity exclusion principle’ (Dexter, 1988) which holds that superordinate aggregates have greater porosity than subordinate aggregates due to pore spaces existing between the smaller, denser constituent particles. These pores are planes of weakness that increase aggregate susceptibility to fragmentation when mechanical stress is applied (Braunack et al., 1979; Utomo and Dexter, 1981). Aggregate stability also depends upon the different types of bonding mechanisms operating across different size scales. For example, ramifying plant roots or mycorrhizal hyphae may enmesh soil particles together into macroaggregates (>250 μm); plant debris and polysaccharides excreted by bacteria, fungi and roots may be important in the formation and binding of microaggregates (<250 μm); and clay flocculation along with polyvalent cation bridging of clay with calcite and dolomite, decomposed organic matter and important binding agents at the ~20 μm scale (Tisdall and Oades, 1979; Oades, 1984; Oades and Water, 1991).

Considering the observed link between aggregate strength, size, and prevailing bonding mechanisms, it seems reasonable to expect that a group of aggregates characterized by a common set of binding agents may exhibit a similar resistance to disruption by ultrasonic agitation. Building upon this concept, Fig. 1 illustrates a framework for describing aggregate comminution by organizing aggregates into groups, or “cohorts”, according to their observed resistivity to ultrasonic agitation. Note that the y-axis in Fig. 1 is positive in both directions from the origin to allow for a more convenient display of information.

The x-axis represents particle diameter (μm). The illustrated curves represent PSDs as the differential mass of particles of size x relative to the total mass of particles in that group. Curves shown below the y-axis (origin, 1, 2, 3) represent groups of aggregates (“cohorts”) defined by a characteristic rate of breakdown. Curves above the origin (I, II, III) represent the distribution of discrete particles (aggregates and primary particles) liberated from aggregate cohorts. The dashed arrows between the curves denote the relationship between a given cohort and its Liberated particles. For example, 1 → I represents the breakdown of cohort 1 aggregates to yield the distribution, II, of liberated discrete particles. Aggregates of cohort 2 include all aggregates falling under the definition of cohort 2 prior to disruption, whether these exist discretely, or are initially assimilated into aggregates of higher hierarchical order(s). Conversely, the distribution II is defined as the size distribution of all discrete particles, including aggregates, liberated from cohort 2 aggregates upon fragmentation. More precisely, II is the distribution of particles that would occur if cohort 2 was isolated, and thereafter only cohort 2 aggregates (but not their liberated aggregates) were permitted to break down. Note, however, that hierarchical ordering is implied by the lettering of cohorts 1, 2, 3, etc. Particles liberated from a given aggregate are permitted to include discrete subordinate aggregates belonging to any number of cohorts.

It is also important to note that this model of aggregate breakdown assumes that all aggregates – whether initially assimilated into larger aggregates or existing discretely – are continuously agitated and subject to fragmentation throughout the applied ultrasonic treatment. This assumption would not account for the possibility that...
Fig. 1. Conceptual framework for describing aggregate comminution, illustrating arbitrary distributions of aggregates and their fragments.

However, it is clear from inspection of Fig. 2 that the first of the two terms on the right-hand side of Eq. (1) has no net impact on the total mass of the interval \([x_a, x_b]\), because the mass \(b_2 q_2(x)dx\) is neither contributed to, or lost from, this interval. This observation is important to consider when reporting calculated total mass of aggregates, as it indicates that the total observed loss of material within a PSD interval due to aggregate comminution is always less than or equal to the actual initial amount of material composing aggregates within that interval. However, the magnitude of errors due to this effect is expected to decline as the width of selected PSD intervals is reduced.

To preclude misleading reporting of total aggregated material, the system of notation developed above will be modified to reflect only measurable changes in the total mass of \([x_a, x_b]\) due to aggregate comminution. First, the particle-size intervals \([x_a, x_{\text{max}}]\), \([x_a, 0]\), and \([0, x_b]\) will hereafter be called “tiers” A, B, and C, respectively, as illustrated in Fig. 2. The term \(q_0(x)\equiv (1−d(x))q_2(x)\) is introduced to be analogous to \(q_2(x)\) but reflecting the distribution of mass of particles of size \(x<x_a\) assimilated into tier A aggregates. Similarly, \(q_2(x)\equiv (1−d(x))q_2(x)\) is the distribution of mass of particles of size \(x<x_a\) assimilated in tier B aggregates. Also, the term \(p_2(x), x\in[0, x_b]\) is introduced to be analogous to \(p_2(x)\) but reflecting the size distribution of particles of size \(x<x_a\) liberated from tier A aggregates; and similarly for \(p_2(x)\) with respect to particles of size \(x<x_a\) liberated from tier B aggregates. Hypothetical curves representing the \(b_2 q_2(x)\), \(b_2 q_2(x)\), and \(b_2 p_2(x)\) are shown in Fig. 2. With these definitions, the right-hand side of Eq. (1) can be rewritten to reflect only the mass of liberated particles of size \(x_0<x\) that have a measurable impact (contribution) on the total mass of tier B:

\[b_2\left[\int_{x_a}^{x_b} \frac{1}{\lambda} q_2(x)(1−\phi(x))dx\right] = b_2\int_{x_a}^{x_b} q_2(x)dx = b_2\int_{x_a}^{x_b} p_2(x)dx, \]

or

\[b_2 = \frac{\int_{x_a}^{x_b} q_2(x)dx}{\int_{x_a}^{x_b} p_2(x)dx}. \]

Similarly, a term can be obtained representing the total measurable loss of mass from tier B due to comminution of tier B aggregates:

\[b_2\left[\int_{x_a}^{x_b} q_2(x)(1−\phi(x))dx\right] = b_2\int_{x_a}^{x_b} q_2(x)dx = b_2\int_{x_a}^{x_b} p_2(x)dx, \]

or

\[b_2 = \frac{\int_{x_a}^{x_b} q_2(x)dx}{\int_{x_a}^{x_b} p_2(x)dx}. \]

Having obtained terms representing the total input and loss of mass from tier B due to aggregate comminution, the instantaneous mass of tier B at a given level of applied ultrasonic energy, \(E\), can be obtained by incorporating terms describing the rate at which these
aggregates break down under ultrasonic agitation. Similar to Field and Minassian (1999) and Field et al. (2006), we assume that for a quantity of aggregates (of equal stability) the disintegration of aggregated particles A into fragments F, or A → F, with increasing E follows first-order decay. However, we are interested in the rate of contribution of F to tiers B and C. Considering the reaction A → F, the rate of change of the total quantity of fragments is equal but opposite to the rate of change in the total quantity of aggregated particles. Integrating, an exponential expression describing the total quantity of aggregates (of equal stability) the disintegration of aggregates break down under ultrasonic agitation. Similar to Field et al. (2006) is now developed in order to simultaneously model changes in the total mass of any arbitrary set of PSD tiers (e.g. tiers A, B, C, D, etc.) due to comminution of aggregates under ultrasonic agitation. The basic problem is identical to that of Eq. (9) – i.e. a mass-balance of particles contributed to and lost from a given tier – but with the added complexity of tracking particles across multiple tiers. In fact, Eq. (11) already implicitly expresses behavior of three adjacent tiers – tiers A, B, and C – although only changes in tier B are explicitly stated. The mass of these three tiers at a given level of E is represented by the following system of equations:

\[
D_{AB}(E, x) = D_{AB} + \sum_{i=1}^{n} b_{iA} \left(1 - \int_0^x p_{2A}(x)dx \right) - b_{iB}(1 - e^{-a_{iE}}) \]

where \(\delta_{PA} \) is the total mass of primary particles within tier A. This system expresses the loss of material from tier A (i.e. \(b_{PA} \)) occurring at
rate \(q_i \), a contribution of some proportion of this material to tier B, offset by the breakthrough of tier B aggregates (\(\beta_{AB} \)); and an increase in the mass of tier C due to contributions from tiers A and B (i.e., the quantities \(\Omega \) and \(\Omega_{AB(Gold)} \) illustrated for the single-cohort scenario in Fig. 2). Note that the parameters \(\beta_i \) and corresponding \(a_i \) are represented in tiers A, B, and C; and that the parameters \(b_i \) and corresponding \(a_i \) are represented in B and C. In the context of nonlinear regression, the parameters to be estimated include the \(a_i, b_i \) for the ith tier, integrals of the \(p_{A}(x), \Omega \), and the \(D_{ij} \).

To extend this development to a 4-tier system, consider the case in which tier C has a nonzero lower bound, \(x_L \). Let tier D represent the fraction \([0, x_L]\). The change in volume of tiers C and D with applied energy would then be:

\[
D_{C}(E, x) = D_{OC} + \sum_{i=1}^{n} \left[\left(b_{iC} \int_{0}^{x_L} p_{A}(x)dx + b_{iB} \right) \times \left(1 - \int_{0}^{x_L} p_{AB}(x)dx - b_{iA} \right) \right] \left(1 - e^{-\alpha E} \right)
\]

\[
D_{D}(E, x) = D_{OD} + \sum_{i=1}^{n} \left[b_{iC} \left(\int_{0}^{x_L} p_{A}(x)dx + b_{iB} \right) \left(\int_{0}^{x_L} p_{AB}(x)dx + b_{iB} \right) \right] \left(1 - e^{-\alpha E} \right) \quad \text{where} \quad p_{AB}(x) = \frac{b_{iA}p_{A}(x) + b_{iB}p_{B}(x)}{b_{iA} \int_{0}^{x_L} p_{A}(x)dx + b_{iB}}
\]

Due to the fact that the mass \(\int_{0}^{x_L} p_{A}(x)dx \) and \(b_{iB} \) are distributed to the \(<x_L \) fraction at the same rate \((q_i) \) for the ith cohort, it is not possible to distinguish between \(p_{A}(x) \) and \(p_{AB}(x) \) by measuring total mass changes in the \(<x_L \) fraction. Hence, the terms \(p_{A}(x), x \in [0, x_L] \) are introduced to represent the combined distribution of these particles. In other words, \(\int_{0}^{x_L} p_{A}(x)dx \) represents the proportion of ith cohort liberated particles of size \(<x_L \) that are also smaller than \(x_L \). Fig. 2 illustrates a curve representing the \(p_{AB}(x) \), indicated in the upper-left-hand corner. Note that if the ith cohort is represented in tier B but not tier A, then \(p_{AB}(x) = p_{A}(x) \), because \(p_{AB}(x) = 0 \) for all \(x \).

Expansion of the system to any number of tiers can be accomplished according to the same rational employed to obtain the 4-tier system above. For instance, analogous to the \(p_{AB}(x) \) for the 4-tier system, a 5-tier system must include the terms \(p_{iA}(x) \) must be introduced, to represent the combined distribution of particles \(<x_L \) liberated from all ith cohort aggregates \(>x_L \). The example analysis below employs a 5-tier system.

As this development illustrates, the model rapidly increases in complexity with each additional tier; and hence the number of tiers that can be practically modeled is limited. Also, an unavoidable limitation of the model is that only net changes of mass within each tier can be detected, such that if particles are being contributed and lost from a given tier at the same rate (i.e., associated with the same cohort), the latter mass cannot be detected if it is smaller than the mass being contributed. If this “replacement” is occurring to a significant degree, the effect would be (1) smaller estimates of cohort mass; and (2) calculation of a finer distribution of liberated particles, and a coarser distribution of aggregate sizes, than the actual distributions of the given cohort (Fristensky, 2007).

Q6

2.2. Site

The soil investigated in this study was obtained in the Lake Tahoe Basin, California, USA, from a forested slope located within the Resort at Squaw Creek complex in the South Fork Squaw Creek Watershed. The sample site is a research plot monitored by Integrated Environmental Restoration Services (IERs, Tahoe City, CA), as part of ongoing erosion abatement research. Local vegetation included white fir (Abies concolor), and pinyon manzanita (Arctostaphylos nevadensis), along with winter-green (Pyrola picta) and lousewort (Pedicularis semibarbata) (Integrated Environmental Restoration Services (IERs), 2007). A summary of soil site information and soil characteristics is presented in Table 1 (Soil Survey Staff, 2007).

Soil sampling was conducted in late August, 2006. Average soil moisture at time of sampling was measured by time-domain reflectometry (TDR) at approximately 10 cm depth. Three samples of approximately 500 g were obtained from the surface soil within a 400 ft² area to an approximate depth of 8–10 cm (excluding litter layer). The three soil samples allowed to air-dry, then gently dried to 2 mm, homogenized, and sealed at room temperature until analysis. The oven-dry (24 h at 105 °C) weight of the soil was determined to calculate the hygroscopic moisture content under laboratory conditions. Soil organic matter (Walkley–Black method) and soil pH was determined by the University of California Agricultural and Natural Resources Lab. Table 2 reports the selected physical and chemical properties of the prepared soil.

2.3. Ultrasonic processing

Ultrasonic processing of soil samples was based closely upon the method and experimental investigations presented in Raine and So (1993, 1994). Ultrasonic processing was conducted using a Vibra-Cell® VCX-450 operating at 20 kHz with a maximum power output of 130–406 Watts, and using a 113 mm length, 6 mm diameter titanium-alloy probe. Subsamples of 4 g oven-dry equivalent weight each were processed in 45 ml centrifuge tubes (1.5 cm radius) in 31 ml of deionized (DI) water. Samples were rapidly immersed in DI water 30–60 min before processing. The ultrasonic probe was inserted into the soil suspension to a depth of 1.43 cm, with the probe centerline 0.6 cm from the container wall. During ultrasonification, subsamples were insulated with a 0.25 cm-thick polyurethane foam sheet tightly set within a polystyrene block with holes for the ultrasonic probe and temperature probe.

Ultrasonification of soil suspensions was conducted at constant amplitude for 12 different time periods between 0 and 1650 s (Table 3) in order to obtain a measure of the soil disruption over a wide range of applied energies. Three repetitions were performed for each period of applied energy. Processor amplitude was held constant at 65%, which was qualitatively determined to be the minimum level able to produce enough mixing to maintain circulation of the largest sand-sized particles. This amplitude applied 14.2 ± 0.2 W (SE) of ultrasonic energy to the soil–water suspension, measured calorimetrically (Raine and So, 1993). Suspension temperature was maintained within the range of 20–35 °C by cooling suspensions to 20 °C in an ice bath after each 150-second period of applied energy (Raine and So, 1994).

Suspension temperature was measured during ultrasonic processing with a 24.5 cm, 0.318 cm diameter bendable 3-pin RTD integral-handle temperature probe, and a Digi-Sense® (Cole-Parmer Instrument Co, Vernon Hills, IL) Thermololog™ digital RTD thermometer.
were conducted. Heuristically, regression model selection proceeded via the following approach described above was not quite sufficient to obtain an appropriate model. It was clear at certain stages that the “best” model either did not make physical sense (e.g. negative asymptote), or did not exhibit the expected form (e.g. a straight line fit due to outliers or large variance, where a curvilinear distribution was observed). Visual inspection of a graphical plot of the model throughout the variable selection process was very useful in identifying potential outliers as well as inappropriate parameter terms or values.

Once an appropriate model was selected, JMP was used to obtain confidence limits (CLs) for all parameters. If CLs bounded zero at the 95% level, the associated term was excluded from the analysis, and the (reduced) model was re-evaluated. If two modeled cohorts were found to possess reaction rate constants that did not significantly differ at the 95% level, they were considered to represent the same cohort. Also, in accordance with aggregate hierarchy theory and the porosity exclusion principle (Kragten, 1994), it was expected (although not strictly assumed) that larger aggregates would exhibit larger reaction rate constants compared to smaller aggregates. This overall model selection approach described above was not quite sufficient to obtain an appropriate model. It was clear at certain stages that the “best” model did not make physical sense (e.g. negative asymptote), or did not exhibit the expected form (e.g. a straight line fit due to outliers or large variance, where a curvilinear distribution was observed). Visual inspection of a graphical plot of the model throughout the variable selection process was very useful in identifying potential outliers as well as inappropriate parameter terms or values.

Once an appropriate model was selected, JMP was used to obtain confidence limits (CLs) for all parameters. If CLs bounded zero at the 95% level, the associated term was excluded from the analysis, and the (reduced) model was re-evaluated. If two modeled cohorts were found to possess reaction rate constants that did not significantly differ at the 95% level, they were considered to represent the same cohort. Also, in accordance with aggregate hierarchy theory and the porosity exclusion principle (Kragten, 1994), it was expected (although not strictly assumed) that larger aggregates would exhibit larger reaction rate constants compared to smaller aggregates. This overall model selection approach described above was not quite sufficient to obtain an appropriate model. It was clear at certain stages that the “best” model did not make physical sense (e.g. negative asymptote), or did not exhibit the expected form (e.g. a straight line fit due to outliers or large variance, where a curvilinear distribution was observed). Visual inspection of a graphical plot of the model throughout the variable selection process was very useful in identifying potential outliers as well as inappropriate parameter terms or values.
2.6. Model comparisons

Results of the proposed model were compared with the results of alternative models: a single exponential approach (or decay) function (see Eq. (4), where \(V_0 \) is the initial PSD tier volume, and \(A_0 \) is the total volume of particles liberated from the PSD tier); and the ALDC (Field and Minasny, 1999). These alternative models were fitted to experimental data using the nonlinear regression platform of JMP statistical software. Confidence intervals for all estimated parameters were obtained as described above. The alternative models considered for comparison are “nested” within the proposed (“full”) model. Therefore, the relative appropriateness of the models can be compared using the F-test to determine whether the reduction in the model SSE attained by the inclusion of additional parameters is statistically significant when considering the associated loss of degrees of freedom (Kutner et al., 2005, p. 72–73). In other words, if the “reduced” model is assumed to be the correct model (\(H_0 \)), the F-test ascertains the probability that the smaller SSE of the “full” model is due to random variation in the data. If this probability is very low (e.g. \(p \leq 0.05 \)), the full model is taken as statistically more appropriate than the reduced model (\(H_0 \)).

The simple exponential approach (or decay) function was fitted to data representing the <2 \(\mu \text{m}, 2–20 \mu \text{m}, <20 \mu \text{m}, \) and 250–1000 \(\mu \text{m} \) particle-size fractions. The ALDC (Field and Minasny, 1999) model was applied to the experimental dataset by simultaneous nonlinear regression analysis of the >250 \(\mu \text{m} \) and <20 \(\mu \text{m} \) fractions. Parameter estimates were obtained for \(k_1, k_2, \) and \(A_0 \) according to the equations provided in Field and Minasny (1999). The model

\[
\text{ALDC} = A_0[\exp(-k_1E) - \exp(-k_2E)] + C_2 \tag{12}
\]

was then applied to the 20–250 \(\mu \text{m} \) fraction, by inserting the parameter estimates obtained earlier. In this analysis, \(C_2 \) was allowed to vary freely to account for the initial volume.

2.7. \(E_{25}, E_{50} \) and \(E_{75} \)

Similar to Fuller and Goh (1992), comparisons of aggregate stability in this study are based on the level of energy required to reach benchmark states of aggregate breakdown. The indices selected for comparison are \(E_{25}, E_{50}, \) and \(E_{75} \), the energy (\(\text{J g}^{-1} \)) required to liberate 25%, 50% and 75%, respectively, of the aggregated particles within a given PSD tier. Three states of soil disruption were selected in order to highlight relative soil behavior across a wide range of applied energy. However, inverse predictions of the energy required to reach a particular state of breakdown are not trivial to calculate when more than one rate constant characterizes aggregate breakdown within a PSD tier of interest. For example, consider the following 2-cohort model for a given PSD tier, describing strictly the volume of aggregated particles (\(b_1 + b_2 \)).

\[
A = b_1 e^{-a_1E} + b_2 e^{-a_2E}. \tag{13}
\]

The energy term \(E \) cannot be isolated through algebraic manipulation:

\[
E = -\frac{\ln\left(\frac{A}{b_0}\right)}{a_0} \tag{14}
\]

In order to obtain a prediction of \(E \) at a given level of \(A \), numerical approximation methods must be invoked. Here, Mathematica (version 5.1.0.0, Champaign, IL, 1988–2004) was utilized for numerical solving, using the FindRoot function. Confidence limits for \(E_{25}, E_{50}, \) and \(E_{75} \) were estimated according to the method of Alvord and Rossio (1993), again using Mathematica for numerical solving.

3. Results and discussion

3.1. Particle-size analysis

Laser-light diffraction particle-size analysis of treated samples provided precise results for all selected PSD tiers and across all levels of applied ultrasonic energy (Table 3). Fig. 3 graphically presents the PSD data for each tier as a function of applied energy. The results indicate both precision in the PSD measurement method and high reproducibility of the ultrasonic tests. Notably, steady changes in the volume of macroaggregate (>250 \(\mu \text{m} \) PSD tiers were observed with increasing energy application, indicating that the laser-light technique is able to resolve the progressive breakdown of macroaggregate subgroups under ultrasonification. Because the laser-light diffraction method requires no separate, disruptive treatment for large particle-sized (e.g. wet sieving), these results demonstrate this method to be
The aggregate fragmentation model developed above was success-
fully fit by nonlinear regression to the particle-size data obtained from
the ultrasonic processing treatments (Fig. 3). Parameter estimates of
the regression model are presented in Table 4, along with associated
confidence limits.

Two aggregate cohorts (1 and 2; Table 4) of significantly (p < 0.005)
different stability were detected within the studied soil, both
composed of macroaggregates (250–200 μm). Cohort 1 was represented
within PSD tiers A (1000–2000 μm) and B (250–1000 μm), and cohort
2 was represented within tiers B and C (20–250 μm). The rate constant
describing the breakdown rate of cohort 1 aggregates (0.004749 g⁻¹)
was significantly greater than that of cohort 2 (0.000325 g⁻¹) at the
99.5% confidence level, indicating that cohort 2 aggregates have
significantly greater ultrasonic stability than the relatively coarser
cohort 1 aggregates. This difference in stability can be observed in
Fig. 3. Tier A aggregates (composed of only cohort 1 aggregates) are
seen to break down more rapidly than tier B aggregates, the latter
including both cohort 1 and cohort 2 aggregates. Note that the two
curves are qualitatively similar at low levels of applied energy (e.g.
<150 J g⁻¹), where changes in the volume of each tier are due largely to
commination of the relatively unstable cohort 1 aggregates. At greater
levels of applied energy (e.g. >330 J g⁻¹), very few cohort 1 aggregates
remain intact, and change in the volume of tier B with increasing
energy reflects only the (relatively slower) comminution of cohort 2
aggregates. North (1976) offered a similar interpretation regarding the
observed comminution of >2 μm aggregates under ultrasound,
suggesting that the early, rapid change in volume was due to
breakdown of weak aggregates, and the “plateau” region of the
curve at high energies reflected the breakdown of smaller, more
stable aggregates. Note also that these different rates of breakdown
are reflected in the relative rates of accumulation of liberated particles
in tiers D and E across corresponding ranges of applied energy. The
proposed model identifies where such corresponding rates of change
are occurring throughout ultrasonification in order to complete the
dynamic mass-mass-balance and determine the volume of particles of
a given size liberated from aggregates of a particular stability. This
enabled calculation of the PSD of particles liberated from cohort 1 to
cohort 2 aggregates (presented below).

The volume (percent of total soil) of cohort 1 and cohort 2 aggreg-
gates was found to be similar at 24.8 and 29.7, respectively (Table 4).

Table 4

| Cohort (μm) | a₁ | b₁ | b₂ | c₁ | c₂ | b₃ | A₁ | A₂ | A₃ | A₄ | A₅ | A₆ | A₇ | A₈ | A₉ | A₁₀ | A₁₁ | A₁₂ | A₁₃ | A₁₄ | A₁₅ | A₁₆ | A₁₇ | A₁₈ | A₁₉ | A₂₀ | A₂₁ | A₂₂ |
|------------|
| 1 (250–2000) | 0.004979 | 0.004431 | 0.005597 |
| 2 (20–1000) | 0.0161 | 0.974 | 11.49 |
| | 14.5 | 12.76 | 15.51 |
| | 0 | 0 | 0 |
| | 1.0 | 1.0 | 1.0 |
| | 0.66 | 0.60 | 0.72 |
| | 0.19 | 0.12 | 0.26 |
| | 0.000125 | 0.000248 | 0.000405 |
| | 1.05 | 1.05 | 1.05 |
| | 0.25 | 0.25 | 0.25 |
| | 0 | 0 | 0 |
| | 28.76 | 27.83 | 29.66 |
| | 48.37 | 47.45 | 49.38 |
| | 10.25 | 9.34 | 11.16 |
| | 1.92 | 1.04 | 2.79 |

The total volume of tier A, B, and C aggregates, irrespective of cohort
affiliation, was 10.61, 26.2, and 17.62; indicating that approximately 68%
of all detected soil aggregates were macroaggregates, of which 42%
roughly 30% were 1000–2000 μm. No aggregates were detected in tier
D (2–20 μm). All volume changes of tier D were the result of liberation
of either primary particles (or highly-stable microaggregates) from
cohort 1 aggregates >20 μm. This is illustrated in Fig. 3, where accumulation of
particles in tier D occurs continually throughout sonication, and at
different rates corresponding to rates of breakdown of cohort 1 and cohort 2
cohorts (this is also true for tier E). It should be noted, however, that
can disaggregate a >20 μm material was not quite dispered
achieved by the application of 5761 J g⁻¹ of ultrasonic energy. It may be
that with added energy a loss of volume would be observed in the
2–20 μm tier (indicating the presence of aggregates). Yet, in compari-
son to the maximum energies required to reach dispersion for the
>2 μm fractions in Raine and So (1993) (approximately 1000 J g⁻¹ at 655
8.9 W) and Field and Minasny (1999) (approximately 1800 J g⁻¹ at 42.4 W)
for studied Vertisols, the maximum applied energy in this study
(5761 J g⁻¹ at 14.2 W) is relatively large. This suggests that the
observed 2–20 μm liberated particles are primary particles, or micro-
aggregates susceptible to fragmentation by the power of applied
ultrasound used in this study.

Interestingly, the volume of tier C (20–250 μm) exhibited an initial rise
during the remainder of the treatment (Table 3, Fig. 3). Modeling results
indicate that the initial accumulation of 20–250 μm particles is due to the
commination of cohort 1 (>250 μm) aggregates, and the subsequent
decline is due to the comminution of cohort 2 aggregates that liberated
20–250 μm particles. Similar behavior was observed by Oades and Waters
(1991) for an Alfisol and a Mollisol subjected to a range of disruptive
energy, where particles 20–250 μm were liberated from fragmented
cohort 1 aggregates >250 μm, followed by breakdown of 20–250 μm
cohort 2 particles to <20 μm particles. Levy et al. (1993) also observed a
stepwise breakdown of aggregates under a range of applied ultrasonic energy. Field
and Minasny (1999) and Field et al. (2006) modeled the accumulation and
subsequent decline in the mass of PSD intervals between 2–20 μm and 2–750
100 μm for different soils subject to ultrasonic treatment, according to an
analogue of a first-order consecutive kinetic reaction. These researchers
interpreted the observed stepwise breakdown of aggregates to indicate the
possibility of a soil hierarchy, based upon the reasoning that
soils with a hierarchy would be expected to exhibit a stepwise decline in
breakdown rate as a soil is progressively agitated, reflecting the
progressive fragmentation of larger aggregates and consequent liberation
of smaller, hierarchically subordinate aggregates of greater stability.

This interpretation may indeed be accurate with respect to the
behavior of tier C. However, the proposed model does not assume a
hierarchical breakdown of aggregates, or that aggregates of differing
stability are necessarily hierarchically related. Therefore, the model
does not preclude the possibility that the observed accumulation and
subsequent decline of tier C volume is due to the release of primary
particles from cohort 1 aggregates, offset by comminution of cohort 2
aggregates that existed discretely (i.e. not bound up in cohort 1 ag-
gregates) before treatment. Indeed, two modeling results lend
support to this latter interpretation. First, a considerably greater
volume of cohort 2 particles (17.2% of soil total) was lost from tier C
than was gained from cohort 1 (8.4%), suggesting that at least 69%
approximately half of tier C cohort 2 aggregates existed discretely
prior to disturbance. Second, considering that the accumulation of
primary particles (or highly-stable microaggregates) within tier D (2–698
20 μm) is partly due to the direct breakdown of cohort 1 aggregates to
particles of this size, it seems reasonable to expect that some
accumulation of primary/stable particles = 20 μm or larger also
occurred within tier C, and are responsible for at least part of the
observed rise in tier C volume. Considering these two observations
together, the alternative interpretation of tier C behavior appears
plausible. Another possibility is that the observed is due to...
accumulation of both primary particles and liberated aggregates. Without additional physical evidence, uncertainty exists regarding which scenario is accurate. Though not performed here, one way to gain a clearer picture of the relationship between the two observed cohorts would be to re-apply the model to a newly selected set of PSD partitions that provides greater resolution within the 20–250 μm fraction. Because an essentially continuous soil PSD was obtained from the laser-light technique, an unlimited number of such iterations could be conducted without the requirement of additional labwork. However, it is worth noting that owing to model independence from assumptions regarding soil hierarchy, calculations of the volume, stability, and PSD of liberated particles of cohort 1 or cohort 2 aggregates do not depend upon identifying whether these aggregates are hierarchically related.

Significant differences (p < 0.05) were observed in the PSD of particles liberated from cohort 1 and cohort 2 aggregates. Fig. 4 is analogous to the conceptual model displayed in Fig. 1, illustrating the size distribution of cohort 1 and cohort 2 aggregates (below the axis), as well as the distribution of their respective liberated particles (above the axis). The distributions in Fig. 4 are discrete blocks, rather than continuous as in Fig. 1, representing the average values of the p(x) and q(x) within the selected PSD tiers. The PSD of particles liberated from cohort 1 is coarser than that of cohort 2; i.e. particles liberated from cohort 2 aggregates comprised of a significantly greater proportion of clay-sized (<2 μm) and fine silt-sized (2–20 μm) particles than cohort 1 aggregates. Only cohort 1 was found to be comprised of particles 20–250 μm in size. These results suggest that with a mild agitation applied to the soil (i.e. disrupting the relatively weak cohort 1 aggregates, but not necessarily the more-stable cohort 2 aggregates), aggregate comminution would result principally in the release of roughly equal proportions 2–20 μm and 20–250 μm particles, with a relatively small fraction of clay released. In contrast, a relatively more energetic disruption of the soil may result in the release of much larger amounts of clay and fine silt, due to comminution of the relatively stable cohort 2 aggregates.

3.3. Model comparison

In previous studies (e.g., Fuller and Goh, 1992; Levy et al., 1993; Raine and So, 1993), exponential functions involving only a single rate constant were used to model the breakdown of aggregates within selected PSD intervals. Such models obtain a single constant describing the rate of breakdown of all aggregates with the selected PSD intervals. However, aggregates of differing stability may exist within a given particle-size interval, breaking down at different rates. In the current instance, allowing for the presence of aggregates of distinctly different stability (i.e. allowing more than one rate constant to describe aggregate breakdown) obtains a significantly (p < 0.0001) better fit than modeling these tiers according the simple decay function used in the cited studies. Table 5 presents the results of F-test comparisons between the proposed model ("full model") and an

<table>
<thead>
<tr>
<th>Tier</th>
<th>Model</th>
<th>Exponential (reduced)</th>
<th>Proposed (full)</th>
<th>Conclude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F₀</td>
<td>a₀</td>
<td>k</td>
</tr>
<tr>
<td>B</td>
<td>Estimate</td>
<td>7.01</td>
<td>20.13</td>
<td>0.0021</td>
</tr>
<tr>
<td>B</td>
<td>MSE</td>
<td>5.52</td>
<td>21.11</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>F-value</td>
<td>27.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Critical F₄₋₃</td>
<td>12.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Estimate</td>
<td>13.77</td>
<td>26.09</td>
<td>0.000971</td>
</tr>
<tr>
<td>B</td>
<td>MSE</td>
<td>4.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>F-value</td>
<td>54.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Critical F₄₋₃</td>
<td>12.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Estimate</td>
<td>2.92</td>
<td>8.52</td>
<td>0.000676</td>
</tr>
<tr>
<td>B</td>
<td>MSE</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>F-value</td>
<td>35.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Critical F₄₋₃</td>
<td>12.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Null (H₀) and alternative (Hₐ) hypotheses explained in text.
* The b_i are the total volume contributed to or lost from the jth tier due to the ith cohort.
* The critical F-value for α = 0.0001.
that no alternative model except the ALDC currently exists for analysis between the two models may not be valid. However, considering not be appropriate in this instance, and therefore comparisons the structure or hierarchy of the studied soil aggregates, the ALDC may (Field and Minasny, 1999; Field et al., 2006). Consequently, because the selected PSD intervals (in this case, 772 consecutive reaction pathway, with the steps corresponding to the 771 aggregates comminute in a dataset. It should be noted that the ALDC assumes that the modeled 770 results of the proposed model for tier C were compared with each tier were always smaller than those obtained by the full model. 769 for all three tiers (B, D, E), the value of the estimated rate constant for the reduced model was between those of the two rate constants 768 obtained for the full model (Table 5). Also, the reduced model estimates of the volume of aggregates or accumulated particles in 767 in each tier were always smaller than those obtained by the full model. 766 The results of the proposed model for tier C were compared with those obtained by fitting the ALDC (Field and Minasny, 1999) to this dataset. It should be noted that the ALDC assumes that the modeled aggregates comminute in a stepwise fashion according a particular 771 consecutive analysis of multiple particle-size intervals spanning both microaggregate and macroaggregate fractions may also aid interpre- 770 717 the PSD range of tier C was selected irrespective of expectations regarding the structure or hierarchy of the studied soil aggregates, the ALDC may not be appropriate in this instance, and therefore comparisons between the two models may not be valid. However, considering that no alternative model except the ALDC currently exists for analysis of the type of behavior displayed in tier C, comparison of the two 779 models seems justified. Results of an F-test comparison between the 780 proposed model and the ALDC are presented in Table 6; indicating that the full model is statistically (p ≤ 0.0001) more appropriate than the 781 ALDC for this dataset. Notably, the ALDC predicts a significantly (p ≤ 0.005) larger rate constant (0.00063 g J⁻¹ ≤ k ≤ 0.00127 g J⁻¹) 782 describing the breakdown of 20–250 μm aggregates compared to 783 that of the full model (0.00022 ≤ k ≤ 0.00044), as illustrated in Fig. 5(b). Hence, in this instance, the ALDC predicts 20–250 μm aggregates to be less stable than predicted by the proposed model. 784 In addition to the potential enhancements in detecting, resolving, and modeling aggregates of differing stability afforded by the proposed model, simultaneous analysis of multiple particle-size intervals spanning both microaggregate and macroaggregate fractions may also aid interpretation of soil dispersion data. For instance, fitting an exponential 793 approach model individually to the <20 μm and <2 μm fractions of the 794 studied soil obtains estimated rate constants of ki (μm) = 0.000885 795 and k2 (μm) = 0.000676, respectively. Considering only the <20, <20, and <2 μm PSD intervals, the relationship 20 μm < k2 μm might suggest the existence of 2–20 μm microaggregates according to the interpretation offered by Field and Minasny (1999). However, results of the proposed model indicate that the observed differences in the rate of 801 change of the <20 μm and <2 μm fractions are due to different rates of 802 breakdown of cohort 1 and cohort 2 macroaggregates, which directly 803 liberate different proportions of 2–20 μm and <2 μm particles. Yet, 804 without simultaneously investigating several discrete PSD fractions in 805

Table 6
F-test comparison for the ALDC and proposed models for tier C

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Estimate</th>
<th>MSE</th>
<th>F-value (critical Fα)</th>
<th>Conclude*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALDC (reduced)</td>
<td>A0</td>
<td>32.73</td>
<td>7.84</td>
<td>52.59 (10.12)</td>
<td>Reject H0</td>
</tr>
<tr>
<td></td>
<td>k1</td>
<td>0.0031057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>k2</td>
<td>0.0008992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed (full)</td>
<td>B0</td>
<td>48.37</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>10.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>14.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b2</td>
<td>17.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>0.004979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>0.000325</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a^The critical F-value for α=0.0001.

b^Null (H0) and alternative (Hα) hypotheses explained in text.

f^The critical F-value for α=0.0001.

Fig. 5. Comparison of the regression fit of the proposed (full) model vs. alternative (reduced) models. (a) The proposed model vs. simple exponential decay for tier B (250–1000 μm). (b) The proposed model vs. the ALDC (Field and Minasny, 1999) for tier C (20–250 μm).

Fig. 6. The ultrasonic energy required to disrupt 25% (E25), 50% (E50), and 75% (E75) of all aggregates for tiers A (1000–2000 μm), B (250–1000 μm), and C (20–250 μm).
both the microaggregate and macroaggregate fractions, we might have alternatively concluded that the studied soil possesses microaggregates of size 2–20 μm that breakdown at rate Δ_μ_μ.

3.4 Stability indices E_{25}, E_{50}, and E_{75}

Throughout the previous discussion, the breakdown and stability of aggregates throughout the soil has been described in terms of the behavior of aggregate cohorts. However, as the number, particle-size domain, stability, and interrelationships of aggregate cohorts will vary between different soils, characterizing aggregate stability in terms of cohort behavior is not amenable to comparative analyses. Quantifying aggregate stability according to the behavior of discrete PSD partitions (e.g., 250–1000 μm) facilitates comparison between different soils. Similar to Fuller and Goh (1992) who calculated the ultrasonic energy required to disrupt 50% of aggregates (E_{50}), based upon results of the proposed model we calculated the level of ultrasonic energy required to observe a 25%, 50%, and 75% reduction in the total volume of all aggregates within a particular PSD tier. These three energy levels E_{25}, E_{50}, and E_{75}, respectively. Estimates of these levels for tiers A, B, and C are illustrated in Fig. 6. The E_{50} of all tier A aggregates was 146 J g^{-1}. This level of energy was significantly (p < 0.005) less than E_{50} for tier B, at 451 J g^{-1}; of which was also significantly (p < 0.005) less than E_{50} for tier C (2279 J g^{-1}). Identical rankings were obtained for these three tiers with respect to the E_{25} and E_{75} statistics at the α=0.05 level.

As above, these results indicate that the stability of aggregates declines significantly with increasing size. The 1000–2000 μm aggregates are the least-stable aggregates observed in this soil, showing relatively rapid disruption with applied energy. Considering that the aggregate cohort represented within this particle-size interval was found to directly liberate 60% of its volume as <20 μm particles, and approximately 10% as clay (2 μm), disruption of these aggregates by rainfall impact may lead to reduced infiltration and increased runoff due to loss of high conductivity pores (Oades, 1984) and formation of a structural crust (Moss, 1991). The increased transport capacity of overland flow due to increased runoff volume, together with an increase in fine particles with low settling rates detached from disrupted aggregates, may enhance erosion potential (Owoputi and Stolte, 1995; Green and Hairsine, 2004). However, the degree to which the ultrasonic stability indices presented above relate to soil erodibility has not been ascertained here. Further research relating these indices to, for example, rainfall simulation variables (similar to Legout et al., 2005 and Le Bissonnais et al., 2007) will help assess the facility of the presented method in predicting soil susceptibility to erosion.

4. Summary and conclusions

The model and experimental approach described above provides a method for analyzing the comminution and ultrasonic stability of aggregates across several PSD partitions spanning both the macroaggregate (~250 μm) and macroaggregate (~250 μm) fractions. Independence of the proposed model from assumptions regarding the constituent particle-size or hierarchical structure of aggregates confers universal applicability and greater flexibility relative to alternative methods. Expanding the model to the simultaneous analysis of several particle-size intervals enables researchers to investigate aggregate comminution dynamics throughout any set of PSDs partitions selected according to individual research interests. For a studied Dystrocretepult subject a range of ultrasonic energy, the proposed model statistically outperformed alternative models in accounting for observed changes in the total volume of 4 out of 5 selected microaggregate and macroaggregate fractions, and offered greater resolution of aggregate comminution dynamics and the PSD of particles liberated from groups of aggregates exhibiting similar stability. Possible evidence of a hierarchical relationship was detected between two group aggregates exhibiting distinctly different stability; however, additional evidence (e.g. varying or increasing the number of selected PSD partitions) was needed to rule out alternative explanations of the observed behavior.

Similar to existing methods, the proposed model assumes that breakdown of a quantity of aggregates follows exponential decay under ultrasonification. While this model has obtained a good regression fit of experimental data both here and in previous studies, it may not be appropriate for all soils or at all particle-size scales. In addition to this fundamental assumption, potential limitations of the proposed model include: (1) underestimation of the mass or volume of aggregates of a particular size, (2) due to the inability to detect a redistribution of particle-sizes within a given PSD interval; (2) inability to detect whether particles are being accumulated and lost from a PSD interval at an identical rate, possibly leading to inaccurate identification of the size (though not of the stability) of source aggregates of liberated particles; and (3) possible variations in modeling results due to (1) and (2) as the number and particle-size domain of the selected PSD intervals changes. Increasing the number of selected PSD intervals will increase model resolution and mitigate errors arising from (1) and (2); but the extent to which this is possible is limited by the rapid increase in model complexity with added PSD partitions; by the resolution of the PSD measurement technique; and by soil variability.

The laser-light diffraction technique for particle-size analysis was critical to this analysis, providing precise, non-disruptive measurements of changes in volume of both microaggregate and macroaggregate fractions; and demonstrating that ultrasonic methods can be usefully employed for targeted stability assessment of macroaggregate subgroups. Analysis of different macroaggregate subgroups offered enhanced resolution of aggregate comminution dynamics, and helped explain the variation observed in finer PSD intervals throughout the ultrasonic treatment. Altogether, the model and experimental approach presented here offered insight into the stability, constituent PSD, and comminution dynamics of soil aggregates. Both the flexibility of the proposed model and extension of ultrasonic stability assessment to simultaneous analysis of both microaggregate and macroaggregate subgroups can facilitate broader application of ultrasonic methods for soil processes related research.

References

Integrated Environmental Restoration Services (IERS), 2007. Monitoring and Assessment of Erosion Control Treatments in and around the Lake Tahoe Basin. Integrated Environmental Restoration Services, Tahoe City, CA.

Please cite this article as: Fristensky, A., Grismer, M.E., A simultaneous model for ultrasonic aggregate stability assessment, Catena (2008), doi:10.1016/j.catena.2008.04.013